If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24n^2-2n-1=0
a = 24; b = -2; c = -1;
Δ = b2-4ac
Δ = -22-4·24·(-1)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-10}{2*24}=\frac{-8}{48} =-1/6 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+10}{2*24}=\frac{12}{48} =1/4 $
| 0.75(20-p)+0.5p=13 | | 54=y+8 | | 2=6+c | | 2p^2-28p+98=0 | | -5=3x-14x= | | 3v^2+46v+15=0 | | f11= 4 | | 8.5=17/2+b | | 6j^2+76j-26=0 | | 4n^2-12n-7=0 | | X=20.00-0.08x | | 5d^2-45d+100=0 | | 6(2x6)=-7(-2x+4) | | 12y=696 | | 14r=294 | | 25y=275 | | 367=-4x+60 | | 8p=512 | | 12b=936 | | 4(b-5)=15.6 | | 3x+42=119 | | 24z=216 | | .3x=x-25 | | n−335=315 | | 6t^2+20t+14=0 | | ∣x+8∣=≤4 | | 3d^2-16d+5=0 | | t+304=703 | | 13.50x+20=Y | | n/24=14 | | n24=14 | | 6k^2+81k-42=0 |